CS256-Assignment#3

3 Problems. 50 points.

Finish reading Chapter 0 of the textbook (excluding Section 0.4 and the parts related to grouped statements).

1. [30 points] Prove that every formula of the form

$\nabla_1 \nabla_2 \dots \nabla_n p,$

where each ∇_i is either \Box or \diamondsuit , is congruent to one among

$\Box p, \diamondsuit p, \Box \diamondsuit p, and \diamondsuit \Box p.$ For example, $\diamondsuit \Box \Box \diamondsuit \diamondsuit \diamondsuit p \approx \Box \diamondsuit p.$

Describe a procedure for computing the correct congruence.

<u>Note:</u> Prove the congruences, such as $\Box \Box p \approx \Box p$, used in your proofs.

2. [10 points] Prove that: $\widehat{\mathcal{W}}, \wedge, \neg, \forall$

is a complete set of operators for future temporal formulas, i.e., every future temporal formula is congruent to a formula built from state formulas using only $\widehat{\mathcal{W}}$, \wedge , \neg , and \forall .

Clarification: \forall is only included because temporal logic formulas include the quantifiers \forall and \exists . Don't use \forall when showing how to rewrite a temporal operator (e.g., by just opening up its definition). [Give the temporal congruences without proof.]

3. [10 points]

(a) Write a quantifier-free formula stating that p holds precisely at all even positions, i.e., p is true at positions $0,2,4,\ldots$ and false at positions $1,3,5,\ldots$

(b) Using flexible quantification over boolean variables, write a formula stating that p holds at all even positions. The formula should not restrict the value of p at odd positions. (c) Using flexible quantification over integer variables, write a formula stating that p holds at positions 0,1,4,9,16,..., i.e., positions $j = k^2$ for k = 0, 1, ... Nothing is said about the value of p at other positions. You can also use rigid quantification if necessary.